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ABSTRACT 

Based on the background of Carbon Peak and Carbon Neutralization (CPCN), this study aims to applies Remote Sensing 

(RS) images of Shenzhen in 2008, 2013 and 2018, combined with RS and Geography Information System (GIS) technology 

to classify Land Use/Land Cover (LULC), calculate Net Primary Productivity (NPP), and then estimate the carbon storage 

of green space in Shenzhen. The results show that during the decade from 2008 to 2018, the green space in Shenzhen is 

reduced and the construction land has increased. In the process of land transfer in Shenzhen, both cultivated land is non-

agricultural and the reclamation of construction land is withdrawn, green space carbon reserves decreased in the 

beginning and then increased. The reason is that green space was transformed into other types of land from 2008 to 2013, 

resulting in the reduction of green space carbon storage. However, the change of green space from 2013 to 2018 is not 

obvious. Due to Shenzhen advocates a low-carbon economy and green development, resulting in an increase in carbon 

storage. 

KEYWORDS: Net Primary Productivity (NPP); Land Use/Land Cover (LULC); Remote Sensing (RS); Carbon Storage; 

Climate Change 

INTRODUCTION 

In the process of industrialization, greenhouse gas emissions dominated by carbon dioxide cause global warming and 

various accompanying extreme weather and natural disasters (Bonneuil et al., 2021; Cheng, et al., 2022; Fan and 

Wei,2022; Quevauviller,2022; Tao et al., 2022). Reducing greenhouse gas emissions has become the common 

responsibility and obligation of all countries. Facing a series of environmental problems caused by global climate change, 

the Paris Agreement clearly proposes to keep the global average temperature rise within 2 ℃ relative to the pre-

industrialization level by the end of this century, and make efforts to control the global average temperature rise within 

1.5℃ to reduce the risk and impact of climate change (Choudhury et al., 2022; Sun et al., 2022; Peng et al., 2022;Yu et al., 

2022).  

Following the trend of the times, China proposed in 2020 to strive for a national strategy to achieve the goal of 

carbon peak by 2030 and carbon neutralization by 2060(CPCN); (Qian, et al., 2022).Commonly, there are two ways to 

achieve carbon neutralization: one is to reduce carbon emissions, the other is to pay attention to the carbon sequestration of 

natural ecosystems (Li, 2021). Studies show that strengthening the carbon sequestration capacity of natural ecosystems is 

one of the most economical and effective ways to offset and absorb carbon emissions (Yang et al., 2022). 
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With the development of China on urbanization policy, the control and monitoring of urban carbon emissions 

have a high correlation between CPCN (Shen et al., 2021; Imani et al., 2022; Tao et al., 2022). Due to the high degree of 

human activities and agglomeration in cities, besides causing a serials of urban heat island effect, urban air quality, urban 

ecosystem change, also they have a high carbon emission effect (Mahamba, et al., 2022). Therefore, how to pay attention 

to and solving the problem of urban carbon emission is an important indicator of government policy. Generally, green 

space, lakes, wetlands and other natural ecosystems have strong carbon sequestration capacity (Byomkesh et al., 2012; 

Dan-jumbo et al., 2018; Chen et al., 2019; Aka et al., 2022; Zhang et al., 2022). Besides contributing to the protection of 

urban ecology, its function also plays an important role in the cultural adjustment of living activities and leisure, and is also 

an important indicator of sustainable urban development. Thus, making good use of these carbon sequestration ecological 

spaces in the city will contribute to the monitoring and control of urban carbon emissions, and promote the policy of CPCN 

(here in after referred to as the “dual carbon” goal) (Qian, et al., 2022). 

Urban green space, in a broad sense, refers to all areas covered by vegetation within the city. As an important part 

of the urban ecosystem, urban green space can fix carbon and produce oxygen, and effectively alleviate the heat island 

effect. It is the main direct carbon sink way of the city. Carbon sink refers to the process, activity and mechanism of 

removing carbon dioxide from the air. Carbon sink in the terrestrial ecosystem mainly refers to the amount of carbon 

dioxide absorbed and stored by forests (Li, 2021), or the capacity of forests to absorb and store carbon dioxide. By 

enhancing the carbon sink function of urban green space, the city can achieve carbon and oxygen balance, or alleviate the 

carbon sink pressure of forest land outside the city, it helps to reduce the significant impact on production, life and ecology 

due to the increase of carbon dioxide concentration, and plays an important role in achieving the goal of "CPCN" (Shen et 

al., 2021; Yu and Wang, 2021;Qian, et al., 2022; Zhangand Zhou, 2021) Therefore, the quantitative study of carbon storage 

in urban green space has guiding theoretical and practical significance (Wang et al., 2022). 

As the first batch of low-carbon pilot cities, carbon emission trading pilot cities and sustainable development 

agenda Innovation Demonstration Zone (IDZ), Shenzhen has guiding significance for China's economic construction and 

development, low-carbon environment and green city. It is also the worthwhile study area of this paper. Thus, this study 

takes Shenzhen as the research area, uses Remote Sensing (RS) data and technology to realize LULC classification through 

Support Vector Machine (SVM) supervised classification method (Mirik et al., 2013; Chen, 2019; Talukdar et al., 2020; 

Xiong et al., 2020; Liou et al.,2021), meanwhile uses meteorological data as the data source to estimates Net Primary 

Productivity (NPP) through Carnegie-Ames-Stanford Approach (CASA) model(Potter et al., 1993；Field et al., 1995; Li et 

al., 2012), and finally using the vegetation-carbon-sequestration model to estimate the carbon storage of Shenzhen. 

This study is organized as follows: literature reviews are first presented, that refers to the main theory, concepts 

and technological trends in this study. In the following section, the study area and analysis methods as well as process 

framework are presents, along with data processing. The fourth and fifth section layout the analysis results of LULC 

change and the carbon store on the study area, then to figure out what’s real condition happen. Finally, a summary of the 

discovery on the monitoring benefits of this study and describing the contribution significance. 
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LITERATURE REVIEW 

Carbon Storage of Urban Green Space 

As the most concentrated area of human life, cities account for a large part of carbon dioxide emissions. Meanwhile, with 

the acceleration of urbanization, carbon dioxide emissions are increasing. Studies show that 97% of carbon dioxide 

emissions come from urban areas. Thus, it is urgent to study the carbon sources and sinks of cities to provide decision-

making basis for urban green and low-carbon development. Urban green space is one of the factors to increase urban 

carbon sequestration, so the quantitative research on the carbon sequestration capacity of urban green space is of great 

significance (Shen et al., 2021; Zhang et al., 2022). Generally, relevant research on carbon storage estimation of the forest 

ecosystem was carried out with the help of ecological methods (Guan et al, 1998; Kashaigili et al., 2013; Wang et al., 

2022).Carbon storage is the reserve amount of carbon element, the quality of carbon element or the amount of material, 

usually refers to the amount of carbon in a carbon pool (forest, ocean, land, etc.) (Wang et al., 2021; Wang et al., 2022).At 

first, the methods mainly include sample land inventory methods and biomass model methods. In terms of biomass also 

known as plant biomass, it refers to the dry weight of organic matter contained in unit area at a certain time. Later, it was 

gradually transformed into the measurement of carbon storage and carbon sink combined with RS technology (Yang et al., 

2005；Lu et al., 2008; Wang et al., 2021; Zhang et al., 2022). RS satellites and other technologies can dynamically acquire 

their change information in real time by means of space-time monitoring, which will play an efficient regulatory role in 

maintaining ecology and promoting carbon absorption. 

In the estimation of green space carbon reserves, the study is based on the estimation of forest carbon reserves 

first. After the measurement of forest biomass, the forest carbon reserves are converted at a certain proportion. The 

research on forest carbon reserves was first carried out in Germany, and then Japan, the United Kingdom and the United 

States gradually joined the ranks of carbon reserves estimation. Nowak (1993) estimated the total carbon reserves of 

American cities; Jo and McPherson (1995) estimated the carbon absorption and release of green space in Chicago 

residential area; Rowntree and Nowak (1991)estimated the carbon storage of urban forests in the whole United States; 

Myeong et al. (2006) used RS technology to estimate the aboveground carbon reserves of urban forests in New York City 

by establishing a relationship model between NDVI and aboveground forest carbon reserves of urban forests. Bordoloi et 

al.(2022)used an integrated satellite-based approach to model space carbon stocks and carbon sink potential for different 

LULC patterns in northeast India. 

The research on carbon storage in China started to get involved in development in recent years. That is, with the 

continuous attention to global climate change, Chinese scholars have also started to study and estimate the carbon storage 

and carbon dioxide absorption benefits of urban forests. Such as Guan et al. (1998)outweigh the green space carbon storage 

in the built-up area of Guangzhou by using the measured data; Hanet al. (2003)introduced the application of RS and GIS 

technology in modern urban green space, and applied remote sensing and GIS technology to evaluate the ecological 

benefits of urban vegetation. Zhou et al. (2010) proposed an estimation model of carbon sequestration of urban green space 

vegetation based on remote sensing data in, and used the model to estimate the aboveground dry biomass and aboveground 

net primary productivity of urban green space vegetation. 
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The NPP and CASA 

The Net Primary Productivity (NPP) of vegetation refers to the carbon absorbed by green plants through photosynthesis to 

remove carbon from their own respiration (Deng et al., 2022; Zhang et al., 2022). The remaining organic part can reflect 

the carbon fixation capacity of plants. It is of great significance for tracking regional carbon reserves, studying the carbon 

cycle, and helping to achieve “CPCN” (Xu et al., 2019; Zhang and Zhou, 2021). In terms of Carbon Peak, that is, the peak 

of carbon emission refers to the peak amount of carbon dioxide (or other major greenhouse gases) artificially discharged 

into the atmospheric environment at a certain time point (period). Additionally, Carbon Neutralization is also known as net 

zero carbon emission or net zero carbon footprint, its concept is divided into narrow and broad sense. Carbon neutralization 

refers to the net zero emission of carbon dioxide, but it is not the complete absence of carbon dioxide emissions, but the 

long-term balance between emissions and absorption. In a broad sense, carbon neutralization means not only carbon 

dioxide but also other major greenhouse gases (such as CH4, N2O, SF6, etc.) should reach net zero emissions. 

As for the studies of NPP, the method of sample investigation and inventory was first used, focusing on the role of 

ecosystems in the carbon cycle with the method of biomass. With the development of time and technology, RS technology 

was introduced into relevant research, and RS technology can quickly and efficiently obtain the basic data of regional and 

large-scale ecosystems. 

In recent years, with the development of spatial analysis technologies such as RS and GIS (Amraoui et al., 2022; 

Uwiringiyimana and Choi, 2022; Zhao and Du, 2022), the light energy utilization model driven by RS data has developed 

rapidly, with CASA model as a typical representative. The combination of light energy utilization model represented by 

CASA model and RS technology provides convenience for the study of NPP model. The CASA model is widely used to 

estimate NPP at present. The CASA model builds an RS parameter model based on the mechanism of vegetation 

photosynthesis. After inputting meteorological data, land area, photosynthetic effective radiation of vegetation, coverage 

status and other parameters, it can estimate regional land NPP and global carbon cycle. It estimates NPP through RS data 

and meteorological data, which not only avoids the collection of complex parameters, but also can accurately simulate a 

wide range of NPP. In addition, the RS data adopted has strong periodicity, wide observation area and high spatial-

temporal resolution, making it become a main method for estimating NPP and carbon reserves of forest ecosystem (Potter 

et al., 1993;Wang, 2021; Zhang et al., 2022) 

The research on the NPP of vegetation in China mainly began after 1970. Such as Piaoet al. (2003) estimated the 

NPP of vegetation in the Yangtze River Basin; Zhuet al. (2005) estimated the NPP of vegetation in Inner Mongolia, China; 

it is concluded that the carbon sequestration benefits produced by forests play an important role in the global carbon cycle; 

Liet al. (2015) estimated the carbon reserves of Shangri-La based on CASA model; Abdureyimu (2018) used the CASA 

model to inverse the NPP value of Ili Valley, calculated the vegetation carbon storage using empirical model, and analyzed 

the temporal and spatial distribution characteristics of vegetation carbon storage in Ili Valley. 

STUDY AREA AND METHODS 

Site Description 

Shenzhen, a prefecture level city under the jurisdiction of Guangdong Province, is a sub provincial city, specifically 

designated in the national plan, a megacity, and a special economic zone, a national economic center, an international city, 
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a scientific and technological innovation center, a regional financial center, and a trade and logistics center approved by the 

State Council. Shenzhen has nine administrative districts and one new district: such as Luohu District, Futian District, 

Nanshan District, Baoan District, Longgang District, Yantian District, Longhua District, Pingshan District, Guangming 

district and Dapeng new district (show as Figure1). 

Shenzhen, a coastal city in southern China, is located in the south of the Tropic of cancer. It is located at 113° 46′ 

to 114° 37′E and 22° 27′ to 22° 52′ N in the south of Guangdong Province, on the east bank of the Pearl River Estuary, 

adjacent to Daya Bay and Dapeng Bay in the East; It is adjacent to the Pearl River Estuary and Lingdingyang in the West. 

Shenzhen River is connected with Hong Kong in the South. It borders Dongguan and Huizhou in the north. Since the 40 

years of reform and opening up, Shenzhen has grown transform a small fishing village to an international metropolis step 

by step, from a traditional agricultural area become a global urbanization area, creating an urbanization miracle of 

"Shenzhen speed"(Wu et al., 2020).Becoming one of the four major central cities in Guangdong, Hong Kong, Macao, 

Dawan District, a national logistics hub, an international comprehensive transportation hub, an international science and 

technology industry innovation center, and one of China's three national financial centers, it will spare no effort be building 

a leading demonstration area of socialism with Chinese characteristics, a comprehensive national science center and a 

global marine center. 

 
Figure 1: The Map of Shenzhen Administrative Division. 

 
Methods 

Determine the technical process of the research according to the main contents and methods of the research, hence this 

study proposes a processing framework (the technical framework shows Figure 2). The technical route is divided into four 

parts: such as data acquisition and preprocessing, classification of LULC types (including the land type transfer matrix 

calculation), NPP calculation as well as green space carbon storage calculation.  
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• Data acquisition and preprocessing. The data in this study

meteorological data. The RS data are preprocessed by clipping, radiometric calibration, atmospheric correction 

and mosaic, and the solar radiation data are calculated by using the empirical model. Then, extracted the NDVI, 

Ratio vegetation index (SR), FPAR 

• Classification of LULC types. Based on multi

classify the study area, and proving by kappa value, 

regional LULC dynamic degree as well as calculate the land type transfer matrix.

• NPP calculation. Based on the classification results of urban LULC types and the results of physical and chemical 

parameters of vegetation, combined with meteorological data and the maximum solar energy utilization rate of 

vegetation, the CASA estimation model is established to realize the estimation of NPP.

• Green space carbon storage calculation. Incorporation with NPP and

the carbon storage of green space in Shenzhen.

Figure 2: The Framework of Process Methods.

Data Source and Processing 

The RS images used in this study are downloaded from the free imagery website which is provided by Geospatial Data 

Cloud (GDC). Landsat-8 images were downloaded in 2013 and 2018, but 

so Landsat-5 images were used. The relevant data is shown in Table 1.

Table 1: Metadata of Satellite Images used in this Research

Year Satellite Sensor

2008 Landsat-5 

2013 Landsat-8 
2018 Landsat-8 
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Data acquisition and preprocessing. The data in this study is using Landsat

meteorological data. The RS data are preprocessed by clipping, radiometric calibration, atmospheric correction 

and mosaic, and the solar radiation data are calculated by using the empirical model. Then, extracted the NDVI, 

atio vegetation index (SR), FPAR and APAR to preparing for the NPP of Vegetation calculation.

Classification of LULC types. Based on multi-source RS data fusion, the SVM classification method is used to 

classify the study area, and proving by kappa value, extract the regional LULC data, and then calculate the 

regional LULC dynamic degree as well as calculate the land type transfer matrix. 

NPP calculation. Based on the classification results of urban LULC types and the results of physical and chemical 

ters of vegetation, combined with meteorological data and the maximum solar energy utilization rate of 

vegetation, the CASA estimation model is established to realize the estimation of NPP.

Green space carbon storage calculation. Incorporation with NPP and LULC area data that were used to calculate 

the carbon storage of green space in Shenzhen. 

Figure 2: The Framework of Process Methods. 
 

The RS images used in this study are downloaded from the free imagery website which is provided by Geospatial Data 

8 images were downloaded in 2013 and 2018, but without landsat-8 images were available in 2008, 

used. The relevant data is shown in Table 1. 

: Metadata of Satellite Images used in this Research

Sensor 
Original Bands 

Numbers 
Pixel Resolution 

TM 1,2,3,4,5,7 30m 

OLI 1,2,3,4,5,7,8 30m 
OLI 1,2,3,4,5,7,8 30m 

Xueying Mo & Ruei-Yuan Wang 

editor@impactjournals.us 

sat-8 satellite series data and 

meteorological data. The RS data are preprocessed by clipping, radiometric calibration, atmospheric correction 

and mosaic, and the solar radiation data are calculated by using the empirical model. Then, extracted the NDVI, 

o preparing for the NPP of Vegetation calculation. 

source RS data fusion, the SVM classification method is used to 

extract the regional LULC data, and then calculate the 

NPP calculation. Based on the classification results of urban LULC types and the results of physical and chemical 

ters of vegetation, combined with meteorological data and the maximum solar energy utilization rate of 

vegetation, the CASA estimation model is established to realize the estimation of NPP. 

area data that were used to calculate 

 

The RS images used in this study are downloaded from the free imagery website which is provided by Geospatial Data 

8 images were available in 2008, 

: Metadata of Satellite Images used in this Research 

Path/Row 

121/044 
122/044 
122/044 
122/044 
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This study uses ENVI 5.3 software to carry out a serial of process such as radiometric calibration, atmospheric 

correction, image mosaic and clipping for the images of the three periods respectively. The atmospheric corrected images 

are extracted, and the NDVI is calculated by near infrared (NIR) wavelength and red light band (R). Generally, the 

calculate expressions are used as follows: NDVI= NIR-R/NIR+R (Liou et al., 2021; Gouzile et al., 2022). 

Additionally, the NPP calculation involves solar radiation data. According to the existing empirical formula of 

total solar radiation (Du et al., 2003; Zhou et al., 2022), such as the solar radiation data of Shenzhen is calculated: � =
��(� + �	)Where�� is the total astronomical, radiation�, �are the empirical coefficients, and	 is the percentage of 

sunshine. The sunshine hours are from the statistical yearbook of Shenzhen. 

Dynamic Degree of LULC 

LULC dynamics usually can describe the intensity of land change in a certain period of time and predict the trend of LULC 

change. The expressions are described as formula (1) (Li et al., 2021). 

� = ���
�

× �
� × 100%（1） 

Where: � is the dynamic degree of single LULC type in time; The interval is �; �� is the initial area of a land 

type study; �� is the area at the end of a land study. A positive value of � indicates an increase in land area and a negative 

value indicates a decrease in land area. 

Classification Method and Accuracy Evaluation 

Using ENVI software, fully considering the LULC characteristics of Shenzhen and referring to the land classification 

method of Maitiniyazi and Kasimu (2018), the LULC types of the study area are combined into five first-class LULC 

units, as shown in Table2, namely green space, water areas, cultivated land, construction land and unused land (Fatima and 

Javed, 2021), and then the SVM method used to supervise the classification to obtain the LULC data of Shenzhen. 

Table 2: The Classification of LULC Coverage/Utilization in Shenzhen 
Primary Classification Secondary Classification 

Construction land 

Town 
Traffic land 
Settlements 
Industrial and mining land 

Water areas 
Reservoir 
Lakes 

Green space 
Woodland 
Grassland 

Cultivated land Farmland 

Unused land 
Bare ground 
Other lands 

 
Visual interpretation is used to verify the accuracy of supervision and classification results in Shenzhen, and the 

overall accuracy is more than 90%. In this study, the overall classification accuracy and kappa coefficient are used to 

evaluate the accuracy of LULC classification results. The overall classification accuracy is equal to the sum of correctly 

classified pixels divided by the total number of pixels. The value of kappa coefficient indicates: 0.0-0.20 extremely low 

consistency, 0.21-0.40general consistency, 0.41-0.60 medium consistency, 0.61-0.80 high consistency and 0.81-1 almost 

completely consistent. 
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NPP Calculation  

As an important part of surface carbon cycle, NPP is the main factor to determine ecosystem carbon sink. In the study of 

the impact of global change on the ecosystem, NPP has become an indispensable index (Tang et al., 2013).The principle of 

RS technology in carbon sequestration research is to calculate the relationship between absorbed radiation and primary 

productivity by recording the spectral response of plants during photosynthesis with sensors, so as to obtain NPP, and then 

estimate the carbon sequestration capacity of plants. According to the mechanism and structure of the model, the 

commonly used NPP estimation methods can be divided into three types: statistical model, light energy utilization model 

and process model. Based on the data of land classification results, in this study the improved CASA model is used to 

estimate the NPP of Shenzhen, gradually calculate NDVI, SR, FPAR and APAR, and finally calculate the NPP. The 

calculation process is as follows: 

(1) Normalized Vegetation Index (NDVI) 

In 1973, NDVI was proposed to observe the amount of vegetation on the earth's surface, which has become a widespread 

and practical method so far. The principle is that chlorophylls in plants has a large amount of absorption of red light (R) 

and strong reflection of near-infrared light (NIR). NDVI can be used to observe the vegetation cover of land. The closer 

NDVI is to 1, the higher the vegetation density is; the closer to 0, the lower the planting density. That is, the vegetation leaf 

surface has strong absorption characteristics in the visible red light band and strong reflection characteristics in the near-

infrared band, which is the physical basis of quantitative RS monitoring of vegetation index (Liou et al., 2021; Gouzile et 

al., 2022; Zhou et al., 2022). 

Vegetation Index (VI) is a quantitative radiation value that reflects the relative abundance and activity of green 

living vegetation. It is often used to characterize the physiological status of vegetation, green biomass and vegetation 

productivity in the study area. At present, more than 20 kinds of VI have been proposed, such as Ratio Vegetation Index 

(RVI), Difference Vegetation Index (DVI), Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index 

(EVI), Perpendicular Vegetation Index (PVI), Soil-Adjusted Vegetation Index (SAVI), Modified Soil Adjustment 

Vegetation Index (MSAVI), etc. Among them, the NDVI is the most widely used. The formula (2) for calculating this 

index is: 

���� = � !�!
� !"!（2） 

Where the NDVI range is [- 1, 1]. It is calculated by near infrared wavelength and red light band. 

(2) Ratio Vegetation Index (SR) 

The characteristics of plants reflecting and absorbing infrared light are used to reflect the richness of plants. However, this 

index will have large errors due to regional and seasonal differences, so it is impossible to directly use this index to 

compare the relative relationship of image planting in different regions or at different times. Represented by formula (3): 

#$(%,&) = �"�'( (),*)
���'( (),*)

（3） 

Where NDVI (x, t) represents the NDVI value of pixel x in period t, which is calculated by the formula. 
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(3) Fraction of Photosynthetically Active Radiation (FPAR) 

The FPAR refers to the effective radiation of photosynthesis incident above the vegetation canopy, that is, the absorption 

ratio of PAR (Photosynthetically Active Radiation) received by the vegetation canopy. Its calculation method is as follows: 

The maximum values (NDVImax, SRmax) and minimum values (NDVImin, SRmin) of NDVI and SR of vegetation types are 

calculated respectively through the cumulative frequency of 95% and 5%.Within a certain range, there is a linear 

relationship between FPAR and NDVI. FPAR can be determined according to the maximum and minimum values of 

NDVI of vegetation and the corresponding maximum and minimum values of FPAR(Zhu et al., 2006). 

The values of FPARmaxandFPARminare independent of vegetation type. 5% NDVI value represents desert and bare 

land, and 95% NDVI value represents that the vegetation is in full coverage. At this time, the corresponding FPARmax is 

0.95; 5% NDVI value represents bare ground, and its correspondingFPARmin is 0.001(Zhu et al., 2006), which is expressed 

by formula (4): 

+,-$�'( = �'( (),*)��'( (.,/.0)
�'( (.,/�))��'( (.,/.0)

× (+,-$1�% − +,-$134) + +,-$134（4） 

The research shows that there is also a linear relationship between FPAR and ratio vegetation index (SR) (Zhu et 

al., 2006), which is expressed by (5): 

+,-$5! = 5!(),*)�5!(.,/.0)
5!(.,/�))�5!(.,/.0)

× (+,-$1�% − +,-$134) + +,-$134（5） 

In order to minimize the error, the study combines the FPAR estimated by NDVI and the FPAR estimated by SR, 

and takes the average value as the estimated value of FPAR. Since the non-vegetated area has NDVI value, the FPAR is 

calculated by region according to the current land classification situation of Shenzhen, αis the adjustment coefficient 

between the two methods. Take the average value of 0.5 (Maitiniyazi and Kasimu, 2018) and combine equation (4) and 

equation (5) to obtain equation (6): 

							+,-$(7, 8) = 9																																		0																									Construction	landF+,-$�'( + (1 − F)+,-$5!				Green	space J
（6） 

(4) Absorbed Photosynthetically Active Radiation (APAR) 

The APAR refers to the proportion of photosynthetic effective radiation absorbed by vegetation in the total solar radiation, 

which reflects the strength of photosynthesis of vegetation, and the carbon sequestration capacity of vegetation. The light 

and effective radiation of vegetation depends on the total solar radiation and the characteristics of the plant itself (Jiao et 

al., 2020). Represented by equation (7): 

		-,-$(7, 8) = #KL(7, 8) × +,-$(7, 8) × 0.5（7） 

In formula (7), -,-$(7, 8)is the Photosynthetic active radiation（MJ.m-2.t-1） absorbed by the vegetation in 

pixel 7 in time period 8; #KL(7, 8)is the total solar radiation （MJ.m-2.t-1） received by pixel 7 in time period	8, which is 

calculated by empirical formula(Du et al., 2003); +,-$(7, 8) is the proportion of photosynthetic effective radiation 

absorption of vegetation in pixels; 0.5 represents the proportion of total solar radiation used for photosynthesis. 
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(5) NPP of Vegetation Calculation 

NPP of vegetation can be absorbed by plants, APAR and actual light utilization(O)expressed by two factors, the unit is (g 

C·m2): 

�,,(7, 8) = -,-$(7, 8) × O(7, 8)（8） 

O(7, 8), represents the actual light energy utilization of pixel 7 in month	8. 
Carbon Storage Calculation 

The following vegetation carbon sequestration model (Wang and Gu, 2012; Zhou et al., 2022) is mainly used to estimate 

the carbon storage of vegetation in the study area, which is estimated by the area of different land cover, NPP of vegetation 

and carbon conversion coefficient of different vegetation: 

P = � × Q × R					（9） 

Where, E represents the carbon sequestration amount of land cover type (kg); � refers to the land area (m2) 

corresponding to the land cover type; Q	represents the NPP of land cover type (gC·m2); R means the conversion factor 

between vegetation biomass and carbon content is 0.45 (Wang and Gu, 2012). 

ANALYSIS OF LULC CHANGE 

In this chapter, the spatial-temporal change analysis, dynamic degree analysis and transfer matrix analysis of LULC in the 

study area will be carried out respectively (Zhao and Du, 2022). Before this analysis process, RS images must be classified 

first, but the accuracy of classification is generally evaluated by kappa value. Finally, the kappa coefficient of the 

supervised classification results is above 0.90, indicated that with high accuracy. The results are shown in Table 3: 

Table 3: The Results of the Classification Accuracy Evaluation 
 2008 2013 2018 

Accuracy Assessment 96.63% 96.46% 92.89% 
Kappa 0.95 0.95 0.90 

 
Analysis of Spatial-Temporal Change of LULC 

The supervised classification method selects the SVM to obtain the LULC data of Shenzhen in three periods, and then 

carries out classification statistics to obtain the spatial distribution area and area of various LULC types (as shown in 

Figure 3, Figure 4, Figure 5 and Table 4). In order to more intuitively unfold the LULC change in the study area, the 

LULC change area and LULC dynamic degree in Shenzhen were calculated. 
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Figure 4: The LULC Map of Shenzhen in 2013. 
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Figure 5: The LULC Map of Shenzhen in 2018. 

 
Table 4: The Area of LULC Change in Shenzhen from 2008 to 2018 (unit: hm2) 

Land Type 
2008 2013 2018 

Area Proportion Area Proportion Area Proportion 
Construction Land 85490.7 43.8% 89056.0 45.6% 91886.2 47.0% 
Green Space 91677.6 46.9% 89531.3 45.8% 89178.4 45.6% 
Cultivated Land 2161 1.1% 3384.9 1.7% 2496.3 1.3% 
Water Areas 6997.5 3.6% 6925.3 3.5% 4854.2 2.5% 
Unused Land 9039.1 4.6% 6468.4 3.3% 6950.7 3.6% 
Total 195365.9 100.0% 195365.9 100.0% 195365.9 100.0% 

 
It can be found that the LULC types in Shenzhen are mainly construction land and green space, followed by water 

areas and unused land, and the cultivated land is the least (shown as Table 4). In 2018, for example, the construction land 

and green space area reached 91886.2 hm2 and 89178.4 hm2, accounting for 47.0% and 45.6% respectively, while the total 

proportion of cultivated land, water areas and unused land was only 7.6%. 

From 2008 to 2018, the construction land in Shenzhen increased by 6395.5hm2. As a carbon source, the 

construction of land is one of the important factors affecting carbon emissions. The vegetation is reduced, and the 

solidification effect of vegetation on carbon in the air is greatly weakened. Meanwhile, vegetation residues will also emit a 

large amount of carbon, and the solidification effect of soil on carbon will also be weakened, resulting in an increase in 

carbon emissions. From 2008 to 2013, the green area decreased steadily by 2146.3hm2, 2013 to 2018, which showed that 

Shenzhen attached importance to urban greening and low-carbon development.  

The cultivated land area increased slightly from 2008 to 2013, increased by 1223.9hm2, and decreased in 2018. 

The increase of urban population, rapid economic development and industrial structure adjustment are important reasons 

for the decrease of cultivated land. The water areas has decreased year by year, indicating that the development of 

urbanization has eroded a large number of water areas, which is not conducive to environmental protection in Shenzhen. 

The unused land showed a downward trend from 2008 to 2013 and increased in 2018, indicating that the land supply and 

demand in Shenzhen is tight, and the unused land is gradually developed for construction or other purposes. 
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Dynamic Degree Analysis of LULC 

The single LULC dynamic degree mainly represents the change degree of a certain land type in a certain region. The 

dynamic degree of single LULC of Shenzhen in 2008-2013, 2013-2018 and 2008-2018 is calculated from equation (1). 

The results are shown in Table 5. 

Table 5: The Dynamics Degree of Single l LULC in Shenzhen 
Land Type 2008-2013 2013-2018 2008-2018 

Construction Land 0.0083% 0.0064% 0.0075% 
Green Space -0.0047% -0.0008% -0.0027%  
Cultivated Land 0.1133% -0.0525% 0.0155% 
Water Areas -0.0021% -0.0598% -0.0306%  
Unused Land -0.0569% 0.0149% -0.0231%  

 
It can be seen from Table5 that during 2008-2018, cultivated land and construction land increased at the rate of 

0.0155% and 0.0075% respectively, while green space, water areas and unused land decreased at the rate of 0.0027%, 

0.0306% and 0.0231% respectively. The area of construction land increases year by year, with a rapid increase rate. The 

increase rate from 2008 to 2013 is faster than that from 2013 to 2018. The area of green space decreases year by year, but 

the reduction rate decreases from 0.0047% to 0.0008%. The single dynamic degree of the water areas decreased from 

0.0021% to 0.0598%. The reduction of the water areas will have an adverse impact on the ecological environment of 

Shenzhen. The rate of unused land has changed from decrease to increase, indicating that Shenzhen will develop other 

types of land to increase LULC. 

Analysis of LULC Transfer Matrix 

Applying the LULC area transfer matrix to quantitatively analyze the change direction of different land types and 

understand the evolution process of land types in the study area. It can be seen from Table 6 and Table 7 that the LULC 

change in Shenzhen during the two periods showed the characteristics of one land type changing to a variety of other types. 

Table 6: The LULC Type Transfer Matrix from 2008 to 2013 (unit: hm2) 

2008 
2013 

Construction 
Land 

Green 
Space 

Cultivated 
Land 

Water 
Areas 

Unused 
Land 

Total 

Construction Land 72484.4 8696.8 1162.5 1605.6 1541.4 85490.7 
Green Space 10207.9 76392.2 2014.8 2065.7 996.9 91677.5 
Cultivated Land 897.1 815.4 262.6 150.8 35.2 2161.1 
Water Areas 5906.6 1696.2 473.5 857.7 105.2 9039.2 
Unused Land 1351.2 341.7 81.4 322.4 4900.8 6997.5 
Total 90847.2 87942.3 3994.8 5002.2 7579.5 195365.9 

 
From 2008 to 2013, green space was the main type of transfer out, with a total of 15285.3hm2 transferred out, of which 

the area converted to construction land was the largest, accounting for 67.8% of the total transferred out area; Secondly, it is 

transformed into water areas and farmland. The decomposition of organic soil will be accelerated in the process of farmland 

cultivation, so the conversion from forest to farmland will lead to the release of greenhouse gases such as carbon dioxide from the 

terrestrial biosphere to the atmosphere. The construction land is mainly converted into green space, with 8696.8hm2 transferred 

out. The withdrawal of construction land reclamation will increase the green area, which will increase regional carbon storage to 

a certain extent. The 897.1hm2 of cultivated land is converted into construction land and 815.4hm2 into green space. Cultivated 

land can be regarded as carbon sink to some extent. On the whole, good soil can store more carbon than release. 
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Table 7: The LULC Type Transfer Matrix from 2013 to 2018 (unit: hm2) 

2013 
2018 

Construction 
Land 

Green 
Space 

Cultivated 
Land 

Water 
Areas 

Unused 
Land 

Total 

Construction Land 80150.8 6032.2 460.9 1341.4 1070.7 89056.0 
Green Space 6218.8 80460.6 779.6 1717.4 355.0 89531.3 
Cultivated Land 1135.4 1067.0 826.0 304.6 51.8 3384.9 
Water Areas 3459.0 1140.0 403.9 1323.0 142.4 6468.3 
Unused Land 922.3 478.7 25.9 167.8 5330.8 6925.4 
Total 91886.2 89178.4 2496.3 4854.2 6950.7 195365.9 

 
From 2013 to 2018, construction land and green space were still the main transfer out types. Due to population 

growth, transportation and housing will inevitably occupy a certain green space area. However, compared with 2008-2013, 

the transfer out area of green space decreased, indicating that Shenzhen attaches importance to protecting the ecological 

environment, and vigorously carries out to build the forest, to create a garden city, and strives to achieve the "National 

Forest City". Secondly, the conversion of cultivated land to construction land and green space is a positive ecological 

evolution process, which can significantly increase the carbon sink function of terrestrial ecosystem, which is also related 

to the implementation of the national policy of returning cultivated land to forest.Additionally, the water areasare mainly 

transformed into construction land. 

With the rapid development of Shenzhen, the transfer of construction land has gradually increased. Cultivated 

land, green space and unused land are the main sources of construction land. During this period, woodland has been 

transformed into cultivated land. It can be seen that before 2013, Shenzhen was mainly in a high-speed development 

period. In the process of urban construction, the demand for construction land is increasing, the scale of carbon source land 

is increasing, and the growth rate of construction land is large, it should lead to an increase in carbon emissions, and the 

forest land with high carbon sink is losing. 

NPP AND CARBON STORAGE ANALYSIS 

NPP Analysis 

According to the analysis and calculation of this study (as shown in Figure 6, Figure 7 and Figure 8), the maximum NPP of 

Shenzhen in 2008 was 160.6 g C·m2, the maximum value in 2013 was 134.0 g C·m2 and the maximum value in 2018 was 

134.4 g C·m2, showing the characteristics of high in the eastern mountainous areas and low in the central and western 

regions. Based on the analysis of the LULC classification map, the green space is mainly distributed in the economically 

backward southeast region, and the eastern region is mainly forest or mountainous region, with abundant vegetation types 

and relatively high vegetation NPP. The central and western regions have rapid economic development, frequent human 

activities, dense urban distribution, relatively small green space distribution and low vegetation coverage, so the NPP of 

vegetation is low. 

In the decade from 2008 to 2018, the NPP first decreased and then increased. From 2008 to 2013, Shenzhen was 

in the stage of rapid development. Obviously, construction land occupied a large amount of green space and destroyed the 

surface vegetation coverage, resulting in the decline of NPP. From 2013 to 2018, urbanization accelerated, a large amount 

of cultivated land was occupied, and the cultivated land area decreased. However, as can be seen from Figure 7 and Figure 
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8, the NPP value of construction land in 2018 increased significantly compared with that in 2013. The reason is, during this 

period, Shenzhen also strengthened ecological construction, and increased the construction of road green space and park 

green space, resulting in an increase in the green area of Shenzhen. Thus, in 2018 Shenzhen won the title of "National 

Forest City". However, due to urban expansion, part of the green space was converted into construction land, so the NPP 

value changed slightly. 

 
Figure 6: The NPP Distribution Map of Shenzhen in 2008. 

 

 
Figure 7: The NPP Distribution Map of Shenzhen in 2013. 
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Figure 8: The NPP Distribution Map of Shenzhen in 2018. 

 
Carbon Storage Analysis 

According to formula (9), the calculation of carbon storage of green field in Shenzhen in 2008, 2013 and 2018 was 

4.26×106 t, 3.58×106 t, 4.2×106 t respectively. The results are shown in Table 8. 

Table 8: The Carbon Storage of Shenzhen in the Period 2008, 2013 and 2018 
 2008 2013 2018 

Green area (hm2) 91677.6 89531.3 89178.4  
Greenland average NPP (g C·m2) 102.88 88.8 106.99 
Greenfield carbon storage (t) 4.26×106 3.58×106 4.2×106 

 
The results show that the change of carbon storage of green space in Shenzhen first decreased and then increased. 

From 2008 to 2013, the change of LULC in Shenzhen led to the decrease of carbon storage of urban green space. During 

this period, the carbon sequestration capacity of urban ecosystem vegetation weakened. The main reason is that the green 

space with the highest carbon sequestration capacity was transformed into other types of land, and the green space area was 

transferred out by 15285.3 hm2. The decrease of the green space area led to a decrease in carbon storage of vegetation. 

However, from 2013 to 2018 the carbon reserves of urban green space are increasing, it is due to the fact that after 2012 the 

state has vigorously promoted the construction of ecological civilization and focused on promoting green development, 

sustainability development and low-carbon development. Driven by policies, the urban development in central and western 

regions of Shenzhen has gradually realized the transformation to green development. 

With the continuous expansion of urban construction in Shenzhen, the contradiction between land-use is 

prominent, and the high density of population and buildings makes the ecological environment face severe challenges. 

Therefore, Shenzhen has promoted a policy of "three-dimensional greening", which peculiar ideas has "borrow land" from 
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roofs, walls, three-dimensional bridges, etc., and build greening in the air. This policy may also be one of the important 

factors affecting the change of carbon reserves of urban green space in Shenzhen. In this context, the ecological benefits of 

Shenzhen have been raised to a new level. 

CONCLUSIONS 

Based on the LULC change and NPP calculation of vegetation, this study estimates the carbon storage in Shenzhen and 

analyzes the change of carbon storage. The results show that: 

• During the period 2008-2013, the regional LULC type changes have obvious differences. Construction land 

increased by 3565.3hm2, cultivated land increased by 1223.9hm22, and green space decreased by 2146.3hm. 

Among them, the decreased green space is mainly transferred out as construction land, and cultivated landas well 

as construction land are mainly transferred in. Thus, that kind of change we realize which resulting in the decrease 

of vegetation may also lead to the decrease of vegetation carbon storage, indicating that the carbon storage 

capacity of vegetation in Shenzhen was generally weakened during this period. 

• From 2013 to 2018, the difference of LULC types is not obvious, the change range of green space area is small, 

however the area of construction land is still increasing, so thatthe green space, and cultivated land, water areasas 

well as unused land are converted to construction land. Nevertheless, during this period, the NPP of urban green 

space showed an upward trend, meanwhile carbon reserves is increased by 0.95 compared with 2013 of 106 tons, 

which may has a certain relationship with returning farmland to forest and green policy development. 

From the perspective of above analysis results, this study adopts the combination of RS and GIS technology to 

analyze the land transfer of land environmental changes in Shenzhen in recent decade, as well as calculating the NPP of 

green space and carbon storage, which can effectively obtain the environmental monitoring benefits of the study area. 

Meanwhile, it can obtain further empirical proof according to the comparative evaluation of Shenzhen's environmental 

policies. Therefore, the experimental proof and contribution significance of this study have two crucial perspectives. 

Firstly, in terms of technical analysis, verify the feasibility and rationality of RS and GIS technology, as well as the 

availability and contribution in the long-term environmental perception monitoring in the future. Secondly, in terms of the 

practice of policy and decision-making, this study proves the effectiveness and contribution of urban greening, provides 

effective proof for the continuous promotion of the “dual carbon” policy in near future, and has a better empirical tool on 

the road of sustainable development. 

Therefore, to achieve the goal of “Carbon Peak and Carbon Neutralization”, we should vigorously develop urban 

greening, increase urban green vegetation, restore and protect forest, wetland, marine and other ecosystems, and increase 

the capacity of land and marine carbon sinks. In recent years, there have obvious implementing effectiveness on Shenzhen, 

that has actively built urban greenways, community greenways and regional greenways, and built a three-level park 

construction system of "Natural Park, Urban Park, Community Park", so as to form a green environment pattern with good 

ecology, beautiful landscape, distinctive characteristics and harmonious development between man and nature, and 

contribute to the realization of the environmental carbon neutral vision. 

Overall, the monitoring and analysis data of this study show that good greening policies and actions can indeed 

achieve the purpose of environmental improvement and provide feasible thinking for the realization of the “dual carbon” goal. 



34                                                                                                                                                            Xueying Mo & Ruei-Yuan Wang 
 

 
NAAS Rating: 3.10 – Articles can be sent to editor@impactjournals.us 

 

ACKNOWLEDGEMENTS 

The author is grateful for the research grants given to Ruei-Yuan Wang from GDUPT Talents Recruitment (NO. 

2019rc098), Peoples R China under Grant No. 702-519208, and Academic Affairs in GDUPT for Goal Problem-Oriented 

Teaching Innovation and Practice Project Grant No. 701-234660. 

CONFLICTS OF INTEREST 

The authors declare no conflicts of interest regarding the publication of this paper. 

REFERENCES 

1. Aka, K.; Dibi, H.;Koffi, J.; Bohoussou, C. Land Cover Dynamics and Assessment of the Impacts of Agricultural 

Pressures on Wetlands Based on Earth Observation Data: Case of the Azagny Ramsar Site in Southern Côte 

d’Ivoire. Journal of Geoscience and Environment Protection, 2022，10, 43-61. doi: 10.4236/gep.2022.105004. 

2. Amraoui, M.; Kabiri, L.; Kassou, A.; Ouali, L.; Nutz, A. Diachronic Study of the Vegetation Covers 

Spatiotemporal Change Using GIS and Remote Sensing in the Ferkla Oasis: Case Study, Bour El Khourbat, 

Tinjdad, Morocco. Journal of Geoscience and Environment Protection, 2022, 10, 173-188. 

doi: 10.4236/gep.2022.101012. 

3. Bonneuil, C.; Choquet, P.L.; Franta, B.Early warnings and emerging accountability: Total’s responses 

to global warming, 1971–2021. Global Environmental Change, 2021, 71, 102386. 

https://doi.org/10.1016/j.gloenvcha.2021.102386 

4. Bordoloi. R.; Das, B.; Tripathi, O.P.; Sahoo, U.K.; Nath, A.J.; Deb, S.; Das, D.J.; Gupta, A.; Devi, N.B.; 

Charturvedi, S.S.; Tiwari, B.K.; Paul, A.; Tajo, L. Satellite based integrated approaches to modelling spatial 

carbon stock and carbon sequestration potential of different land uses of Northeast India. Environmental and 

Sustainability Indicators, 2022, 13, 100166.https://doi.org/10.1016/j.indic.2021.100166 

5. Byomkesh, T.; Nakagoshi, N.; Dewan, A. M. Urbanization and green space dynamics in Greater Dhaka, 

Bangladesh, 2012, 8(1), 45–58. https://doi.org/10.1007/s11355-010-0147-7  

6. Chen, Y.N. Multiple Kernel Feature Line Embedding for Hyperspectral Image Classification. Remote 

Sens. 2019, 11, 2892. https://doi.org/10.3390/rs11242892 

7. Chen, C.; Tabssum, N.; Nguyen, H. P. Study on Ancient Chu Town Urban Green Space Evolution and Ecological 

and Environmental Benefits. Nature Environnement and Pollution Technology, 2019, 18, 1733-1738. 

8. Cheng, M.; McCarl, B.; Fei, C. Climate Change and Livestock Production: A Literature 

Review. Atmosphere 2022, 13, 140. https://doi.org/10.3390/atmos13010140 

9. Choudhury, D.; Nath, D.; Chen, W. Near Future Projection of Indian Summer Monsoon Circulation under 1.5 °C 

and 2.0 °C Warming. Atmosphere 2022, 13, 1081. https://doi.org/10.3390/atmos13071081 

10. Dan-jumbo, N. G.; Metzger, M. J.; Clark, A. P. Urban Land-Use Dynamics in the Niger Delta: The Case of 

Greater Port Harcourt Watershed. Urban Science, 2018, 2, 108. https://doi.org/10.3390/urbansci2040108 



Monitoring the Carbon Storage of Urban Green Space by Coupling RS and GIS                                                                               35 
under the Background of Carbon Peak and Carbon Neutralization of China 

 

 
Impact Factor(JCC): 6.0897 – This article can be downloaded from www.impactjournals.us 

 

11. Deng, O.; Li, Y.; Li, R.; Yang, G. Ecosystem Services Evaluation of Karst New Urban Areas Based on Net 

Primary Productivity of Guanshanhu District, Guiyang, Guizhou Province, China. Open Journal of 

Ecology, 2022, 12, 377-390. https://doi.org/10.4236/oje.2022.126022 

12. Du, Y. D.; Mao, H. Q.; Liu, A. J.; Pan, W. J. The Climatological Calculation and Distributive Character of 

Global Solar Radiation in Guangdong Province. Resources Science, 2003, 25(06), 66-70. 

13. Fan, Y.; Wei, F.Contributions of Natural Carbon Sink Capacity and Carbon Neutrality in the Context of Net-Zero 

Carbon Cities: A Case Study of Hangzhou. Sustainability, 2022, 14(5), 2680. https://doi.org/10.3390/su14052680. 

14. Fatima, N.; Javed, A. Assessment of Land Use Land Cover Change Detection Using Geospatial Techniques in 

Southeast Rajasthan. Journal of Geoscience and Environment Protection, 2021, 9, 299-319. 

https://doi.org/10.4236/gep.2021.912018. 

15. Field, C. B.; Randerson, J. T.; Malmström, C. M. Global net primary production: Combining ecology and remote 

sensing, 1995, 51(1), 74–88. https://doi.org/10.1016/0034-4257(94)00066-v  

16. Guan, D.; Chen, Y.; Huang, X. Carbon storage, distribution and its role in carbon and oxygen balance in 

Guangzhou urban green space system. China Environmental Science, 1998, 18(5), 437-

441.https://doi.org/10.3321/j.issn:1000-6923.1998.05.015 

17. Gouzile, A.; Bama, M.; Zamina, B.;Yapi, E.; Soro, G.; Goula, B. ; Issiaka, T. Mapping of Malaria Risk Related to 

Climatic and Environmental Factors by Multicriteria Analysis in the Marahoué Region of Côte d’Ivoire. Journal 

of Geoscience and Environment Protection, 2022, 10, 234-252. https://doi.org/ 10.4236/gep.2022.106015. 

18. Han, H.; Gao, J.; Liu, G. Ecological benefit assessment of urban vegetation by remote sensing and GIS. Chinese 

Journal of Applied Ecology, 2003, 14(12), 2301-2304． 

19. Imani, M.; Lo, S.L.; Fakour, H.; Kuo, C.Y.; Mobasser, S. Conceptual Framework for Disaster Management in 

Coastal Cities Using Climate Change Resilience and Coping Ability. Atmosphere 2022, 13, 16. 

https://doi.org/10.3390/atmos13010016 

20. Jiao, X.; Zhang, H.; Xu, F.; Wang, Y.; Peng, D.; Li, C.; Xu, X.; Fan, H.; Huang, Y, Analysis of the Spatio-

temporal Variation in FPAR of the Tibetan Plateau from 1982 to 2015. Remote Sensing Technology and 

Application,2020, 35(4), 950-961. https://doi.org/10.11873/j.issn.1004 0323.2020.4.0950⁃  

21. Jo, H. K.; McPherson, E. G. Carbon storage and flux in urban residential greenspace. Journal of Environmental 

Management, 1995, 45(2), 109~133. https://doi.org/10.1006/jema.1995.0062 

22. Kashaigili, J.; Mdemu, M.; Nduganda, A.; Mbilinyi, B. "Integrated Assessment of Forest Cover Change and 

Above-Ground Carbon Stock in Pugu and Kazimzumbwi Forest Reserves, Tanzania," Advances in Remote 

Sensing, 2013, 2(1), 1-9. https://doi.org/10.4236/ars.2013.21001. 

23. Li, S.; Potter, C.; Hiatt, C. "Monitoring of Net Primary Production in California Rangelands Using Landsat and 

MODIS Satellite Remote Sensing", Natural Resources, 2012, 3(2), 56-65. https://doi.org/10.4236/nr.2012.32009. 

 



36                                                                                                                                                            Xueying Mo & Ruei-Yuan Wang 
 

 
NAAS Rating: 3.10 – Articles can be sent to editor@impactjournals.us 

 

24. Li, F.; Lu, S.; Li, Y. Carbon Storage Estimation of Shangri-La Based on CASA Model. Forest Inventory and 

Planning, 2015, 40(5), 15–19. https://doi.org/10. 3969 /j. issn. 1671-3168. 2015. 05. 004 

25. Li, H. Research advance of forest carbon sink assessment methods and carbon sequestration potential estimation 

under carbon neutral vision. Geological Survey of China, 2021, 8(4), 79-86. 

https://doi.org/10.19388/j.zgdzdc.2021.04.08. 

26. Li, X.;Lan, L.; Zhu, J.; Xiao, Z.Analysis of the Dynamic Changes in Land Use and Their Driving Factors in 

Ganzhou City. Geomatics＆Spatial Information Technology, 2021, 44(02), 24-28. 

27. Liou, Y. A.; Kuleshov, Y. ;Ho, C. R.; Nguyen, K. A.; Reising, S. C. Preface: Earth Observations for Environmental 

Sustainability for the Next Decade. Remote Sens. 2021, 13, 2871. https://doi.org/10.3390/ rs13152871 

28. Lu, J.; Ren, T.; Yan, D.Domestic Research on Forest Carbon Sinks. Journal of inner Mongolia Forestry science 

& Technology, 2008, 34 (02), 43-47. https://doi.org/10.3969/j.issn.1007-4066.2008.02.012 

29. Mahamba, J.; Mulondi, G.; Kapiri, M.; Sahani, W. Land Use and Land Cover Dynamics in the Urban Watershed 

of Kimemi River (Butembo/D.R.C). Journal of Geoscience and Environment Protection, 2022, 10, 204-219. 

https://doi.org/ 10.4236/gep.2022.106013 

30. Maitiniyazi, M.;and Kasimu, A. Spatial-temporal change of Urumqi urban land use and land cover based on grid 

cell approach. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 

34(1), 210-216.https://doi.org/10.11975/j.issn.1002-6819.2018.01.029 

31. Mirik,M.; Chaudhuri, S.; Surber, B.; Ale, S.; Ansley, R. "Evaluating Biomass of Juniper Trees (Juniperus 

pinchotii) from Imagery-Derived Canopy Area Using the Support Vector Machine Classifier," Advances in 

Remote Sensing, 2013, 2(2), 181-192.https://doi.org/10.4236/ars.2013.22021. 

32. Myeong, S.; Nowak, D. J.; Duggin, M. J. A temporal analysis of urban forest carbon storage using remote 

sensing. Remote Sensing of Environment, 2006, 101(2), 277-282. 

33. Nowak,D. J.Atmosphere carbon reduction by urban trees. Journal of Environmental Management, 1993, 37, 207-

217. https://doi.org/10.1006/jema.1993.1017 

34. Peng, X.; Yu, M.; Chen, H. Projected Changes in Terrestrial Vegetation and Carbon Fluxes under 1.5 °C and 2.0 

°C Global Warming. Atmosphere 2022, 13, 42. https://doi.org/10.3390/atmos13010042 

35. Piao, S. L.; Fang, J.Y.; Chen, A.P. Seasonal Dynamics of Terrestrial Net Primary Production in Response to 

Climate Changes in China. Acta Botanica Sinica, 2003, 03, 269-275. https://doi.org/10.3321/j.issn:1672-

9072.2003.03.003 

36. Potter, C. S.; Randerson, J.T.; Field, C. B.; Matson, P. A.; Vitousek, P. M.; Mooney, H. A.; Klooster, S. 

A. Terrestrial ecosystem production: A process model based on global satellite and surface data. Global 

Biogeochemical Cycles, 1993, 7(4), 811–841. https://doi.org/10.1029/93gb02725  

37. Qian, H.; Ma, R.; Wu, L. Market-based solution in China to Finance the clean from the dirty. Fundamental 

Research, Available online,2022. https://doi.org/10.1016/j.fmre.2022.03.020 



Monitoring the Carbon Storage of Urban Green Space by Coupling RS and GIS                                                                               37 
under the Background of Carbon Peak and Carbon Neutralization of China 

 

 
Impact Factor(JCC): 6.0897 – This article can be downloaded from www.impactjournals.us 

 

38. Quevauviller, P. A Review on Connecting Research, Policies and Networking in the Area of Climate-Related 

Extreme Events in the EU with Highlights of French Case Studies. Atmosphere 2022, 13, 117. 

https://doi.org/10.3390/atmos13010117 

39. Rowntree, R. A.;Nowak, D. J. Quantifying the role of urban forests in removing atmospheric carbon dioxide. 

Journal of Arboriculture, 1991, 17(10): 269-275. 

40. Shen, J.;Guo, X.; Wan, Y. Identifying and setting the natural spaces priority based on the multi-ecosystem 

services capacity index.Ecological Indicators. 2021, 125: 107473. https://doi.org/10.1016/j.ecolind.2021.107473 

41. Sun, R.S.; Gao, X.; Deng, L. C.; Wang, C. Is the Paris rulebook sufficient for effective implementation 

of Paris Agreement?Advances in Climate Change Research. Available online, 2022. 

https://doi.org/10.1016/j.accre.2022.05.003 

42. Talukdar, S.; Singha, P.; Mahato, S.; Shahfahad; Pal, S.; Liou, Y.-A.; Rahman, A. Land-Use Land-Cover 

Classification by Machine Learning Classifiers for Satellite Observations—A Review. Remote Sens. 2020, 12, 

1135. https://doi.org/10.3390/rs12071135 

43. Tang, J.; Jiang, Y.; Li, Z.Y.; Zhang, N.; Hu, M. Estimation of vegetation net primary productivity and carbon sink 

in western Jilin province based on CASA model. Journal of Arid Land Resources and Environment, 2013, 27(04), 

1-7.https://doi.org/10.13448/j.cnki.jalre.2013.04.026. 

44. Tao, C.; Liao, Z.; Hu, M.; Cheng, B.; Diao, G. Can Industrial Restructuring Improve Urban Air Quality?—A 

Quasi-Experiment in Beijing during the COVID-19 Pandemic. Atmosphere 2022, 13, 119. 

https://doi.org/10.3390/atmos13010119 

45. Uwiringiyimana, H.; Choi, J. Remote Sensing and Landscape Metrics-Based Forest Physical Degradation: Two-

Decades Assessment in Gishwati-Mukura Biological Corridor in Rwanda, East-Central Africa. Journal of 

Geoscience and Environment Protection, 2022, 10, 64-81. https://doi.org/10.4236/gep.2022.104005. 

46. Xiong, K.; Adhikari, B.R.; Stamatopoulos, C.A.; Zhan, Y.; Wu, S.; Dong, Z.; Di, B. Comparison of Different 

Machine Learning Methods for Debris Flow Susceptibility Mapping: A Case Study in the Sichuan Province, 

China. Remote Sens. 2020, 12, 295. https://doi.org/10.3390/rs12020295 

47. Wang, R.;Gu, J. Impact of LUCC on Vegetation Carbon Storage in Wuhu during 2000-2009. Environmental 

Science and Management, 2012, 37(6), 153-157. 

48. Wang, R. Y.; Lin, P. A.; Chu, J. Y.; Tao, Y. H.; Ling, H. C. A decision support system for Taiwan’s forest resource 

management using Remote Sensing Big Data. Enterprise Information Systems, 2021,1-

22.https://doi.org/10.1080/17517575.2021.1883123 

49. Wang, Z. Spatial and Temporal Dynamics of Forest Carbon Storage and Influencing Factors Based on CASA 

Model in Hangzshou. Zhejiang Agriculture and Forestry University, 2021, https://doi.org/10.27756/d.cnki. gzjlx. 

2021.000252. 

 



38                                                                                                                                                            Xueying Mo & Ruei-Yuan Wang 
 

 
NAAS Rating: 3.10 – Articles can be sent to editor@impactjournals.us 

 

50. Wang, L.; Zhu, R.; Yin, Z.; Chen, Z.; Fang, C.; Lu, R.; Zhou, J.; Feng, Y. Impacts of Land-Use Change on the 

Spatio-Temporal Patterns of Terrestrial Ecosystem Carbon Storage in the Gansu Province, Northwest 

China. Remote Sens. 2022, 14, 3164. https://doi.org/10.3390/rs14133164 

51. Wu, B. L.; Sun, H.; Shi, J. N.; Zhang, Y. T.; Shi, L. J. Dynamic change and prediction of vegetation cover in 

Shenzhen，China from 2000 to 2018．Chinese Journal of Applied Ecology, 2020. 31(11), 3777-3785. 

https://doi.org/10.13287/j.1001-9332.202011.012. 

52. Xu, J.; Chen, D.; Li, W. L.; Wei, W. Study of vegetation net primary productivity in Gannan based on light use 

efficiency model. Pratacultural Science, 2019, 36(10), 2455-2465.https://doi.org/ 10.11829/j.issn.1001-

0629.2018-0018  

53. Yang, H.; Wu, B.; Zhang, J.; Lin, D.; Chang, S. Research progress on carbon sequestration function and carbon 

storage of forest ecosystem. Journal of Beijing Normal University (Natural Science Edition), 2005, 02, 172-

177.https://doi.org/10.3321/j.issn:0476-0301.2005.02.018 

54. Yang Y. H.; Shi, Y.; Sun, W. J.; Chang, J. F.; Zhu, J. X.; Chen, L. Y.; Wang, X.; Guo, Y. P.; Zhang, H.T.; Yu, L. 

F.; Zhao, S. Q.; Xu, K.; Zhu, J. L.; Shen, H. H.; Wang, Y. Y.; Peng, Y. F.; Zhao, X.; Wang, X. P.; Hu, H. F.; Chen, 

S. P.; Huang, M; Wen, X. F.; Wang, S. P.; Zhu, B; Niu, S. L.; Tang, Z. Y.; Liu, L. L.; Fang J.Y., Terrestrial carbon 

sinks in China and around the world and their contribution to carbon neutrality. Science China: Life Science, 

2022, 65, 861-895. https://doi.org/10.1007/s11427-021-2045-5. 

55. Yu, G.; Hao, T.; Zhu, J. Discussion on action strategies of China’s carbon peak and carbon neutrality. Bulletin of 

Chinese Academy of Sciences, 2022, 37(4), 423-434. https://doi.org/10.16418/j.issn.1000-3045.20220121001 

56. Yu, Y.; Wang, X, G., Estimation of urban green space carbon sink for ecosystem service function. Xi’an Univ. of 

Arch. & Tech. (Natural Science Edition), 2021, 01, 95-102. https://doi.org/10.15986/j.1006-7930.2021.01.013. 

57. Zhang, J.B.; Zhou, S.W. Interpretation on carbon neutrality system. Huadian Technology, 2021, 43(06),1-

10.https://doi.org/10. 3969/j. issn. 1674-1951. 2021. 06. 001 

58. Zhang, M.; Yuan, N.; Lin, H.; Liu, Y.; Zhang, H. Quantitative estimation of the factors impacting spatiotemporal 

variation in NPP in the Dongting Lake wetlands using Landsat time series data for the last two decades. 

Ecological Indicators, 2022, 135, 108544. https://doi.org/10.1016/j.ecolind.2022.108544 

59. Zhang, F.; Tian, X.; Zhang, H.; Jiang, M. Estimation of Aboveground Carbon Density of Forests Using Deep 

Learning and Multisource Remote Sensing. Remote Sens. 2022, 14, 3022. https://doi.org/10.3390/rs14133022 

60. Zhao, R.; Du, Q. Study on the Landcover Changes Based on GIS and RS Technologies: A Case Study of the 

Sanjiangyuan National Nature Reserve in the Hinterland Tibet Plateau, China. Journal of Geoscience and 

Environment Protection, 2022, 10, 140-150. https://doi.org/10.4236/gep.2022.101010. 

61. Zhou, J.; Hu, Y.; Zhou, Y.; Yu, L. A design of carbon-sink model of urban landscape vegetation driven by remote 

sensing．Acta Ecologica Sinica，2010, 30(20), 5653-5655． 

 



Monitoring the Carbon Storage of Urban Green Space by Coupling RS and GIS                                                                               39 
under the Background of Carbon Peak and Carbon Neutralization of China 

 

 
Impact Factor(JCC): 6.0897 – This article can be downloaded from www.impactjournals.us 

 

62. Zhou, Z.; Ding, Y.; Liu, S.; Wang, Y.; Fu, Q.; Shi, H. Estimating the Applicability of NDVI and SIF to Gross 

Primary Productivity and Grain-Yield Monitoring in China. Remote Sens. 2022, 14, 3237. 

https://doi.org/10.3390/rs14133237 

63. Zhu, W.Q.; Pan, Y.Z.; Long, Z.H.; Chen, Y.H.; Li, J.; Hu, H.B. Estimating Net Primary Productivity of Terrestrial 

Vegetation Based on GIS and RS：A Case Study in Inner Mongolia, China. Journal of Remote Sensing, 2005, 03, 

300-307. 

64. Zhu, W.Q.; Pan, Y.Z.; He, H.; Yu, D.Y.; Hu, H.B. Simulation of maximum light use efficiency of typical vegetation 

in China. Scientific Bulletin, 2006, 51(06), 700-706. 

 

 

 

 

 

 

 




